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ABSTRACT 

 
 
It is common practice to summarize the skill of weather forecasts using an agglomeration 

of samples spanning many locations and dates.  In calculating many of these verification 

metrics, there is an implicit assumption that the climatological frequency of event 

occurrence is fixed for all samples.  If the event frequency actually varies among the 

samples, then the scores may report fictitiously high skill. This is an example of the 

previously described statistical conundrum known as  “Simpson’s Paradox.”  Many 

common deterministic verification metrics such as threat scores are subject to 

overestimation of skill, and probabilistic forecast metrics such as the Brier skill score and 

relative operating characteristic are also affected.  Demonstrations of the false skill are 

provided, and guidelines are suggested for how to adapt these diagnostics to avoid this 

problem.
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1. Introduction 

 This article will demonstrate that many commonly used weather forecast verification 

metrics are capable of reporting positive forecast skill when none truly exists or reporting 

more skill than the forecast truly has.    Depending on the metric and the event being verified, 

this effect can be large or small.   

 This effect is has been described in the conventional statistics literature, where it is 

known as “Simpson’s Paradox”  (Simpson 1951, Appleton et al. 1996, Malinas and Bigelow 

2004).  Tables 1-3 provide a common illustration of this paradox, using hypothetical rates of 

admission into graduate-school physical science programs.  Assume that there are two 

universities of higher education in a state system, and Tables 1 and 2 provide the admittance 

data for each university.  At both universities, the men are admitted more frequently than the 

woman.  However, Table 3 composites the data from the two universities, and taken together, 

men appear to be admitted less frequently than women.  Would men have reason for a gender 

discrimination lawsuit against the state?  Clearly not; the problem is that the first grad school 

was not very selective in their admissions, the second was very selective, and this extra 

factor, a “lurking variable” in statistical parlance, confounded the interpretation when 

lumping the two together. 

 A similar problem occurs in meteorological forecast verification, but it is not widely 

appreciated.   We have encountered circumstances where we have diagnosed large positive 

forecast skill when intuition suggested that little or no skill would exist.   For example, the 

first author used a common probabilistic forecast verification metric, the relative operating 

characteristic, in a comparison of ensemble forecast methods (Hamill et al. 2000b, Fig. 13).  

The author reported a relative operating characteristic curve for wind speed forecasts at 5 
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days lead that indicated a highly skillful forecast, different than experience would suggest for 

this lead time.  The second author discussed the overestimation of forecast skill (Juras 2000) 

in a comment on a Buizza et al. (1999) article. It was indicated that the chosen metrics might 

report false skill if climatological event frequencies vary within the verification area.  This 

issue has also been raised in Mason (1989) and less directly in other meteorological 

publications, including Buizza (2001; p. 2335), Stefanova and Krishnamurti (2002, p. 543), 

Atger (2003), Glahn (2004; p. 770), and Göber et al. (2004).  Still, there are hundreds of 

published articles that should have but did not factor in this effect, including two by the lead 

author (Hamill 1999, Hamill et al. 2000b).   Clearly, the problem is not appreciated as widely 

as it should be. 

 In this article we will examine three common skill metrics, the Brier skill score 

(Wilks 1995), the relative operating characteristic (Swets 1973, Harvey et al. 1992), and the 

equitable threat score (Schaefer 1990).  All are capable of reporting positive forecast skill 

when none is present.  Many other metrics such as the ranked probability skill score (Wilks 

1995, Epstein 1969, Murphy 1971), economic value diagrams (Richardson 2000, Palmer et 

al. 2000, Richardson 2001b, Zhu et al. 2002, and Buizza et al. 2003), and other contingency-

table based threat scores will not be discussed but are subject to the same problem. 

  Section 2 will provide a brief review of the three chosen verification metrics, as well 

as descriptions of how they are computed.  Section 3 follows with a very simple example of 

false skill and an explanation of why it occurs.  Section 4 shows that the false value may or 

may not be reported with real meteorological data, depending on what event is being 

considered.  Section 5 demonstrates how large the effect can be for a common verification 

problem, the threat scores of short-range precipitation forecasts.  Section 6 concludes with a 
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discussion of the implications and how to adapt verification strategies to minimize or avoid 

this problem. 

 
2. Computation of common verification metrics 
 
 
 Below, we review three general verification metrics, the Brier skill score, relative 

operating characteristic, and the equitable threat score.  After the review, we describe how 

each of these metrics can be calculated in several different ways. 

 The long-used Brier score (Brier 1950) is a measure of the mean-square error of 

probability forecasts for a dichotomous (two-category) event, such as the occurrence/non-

occurrence of precipitation.  A review is provided in Wilks (1995), and references therein 

provide further background.   The Brier score is often hard to interpret; is a Brier score of 

0.06 good or bad?  Consequently, the Brier score is often converted to a skill score, its value 

normalized by the Brier score of a reference forecast such as climatology or persistence 

(ibid).  A Brier skill score (BSS) of 1.0 indicates a perfect probability forecast, while a BSS 

of 0.0 should indicate the skill of the reference forecast (see Mason 2004 for further 

discussion of whether a BSS of 0.0 indicates no skill).   

 The relative operating characteristic (ROC) has gained widespread acceptance in the 

past few years as a metric for ensemble forecast verification.  The ROC has been used for 

decades in engineering, biomedical, and psychology applications; see an overview in Swets 

(1973).   Its application in meteorology was proposed in Mason (1982), Stanski et al. (1989), 

and Harvey et al. (1992).   In the Hamill et al. (2000a) summary of an ensemble workshop, it 

was recommended by the ensemble verification community as a standard metric, and the 

ROC was recently made part of the World Meteorological Organization’s (WMO) standard 
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(WMO, 1992).  Characteristics of the ROC have been discussed in Buizza et al. (1998), 

Mason and Graham (1999, 2002), Juras (2000), Wilson (2000), Buizza et al. (2000ab), Wilks 

(2001), Kheshgi and White (2001), Kharin and Zwiers (2003), and Marzban (2004).  The 

technique has been used to diagnose forecast accuracy in, for example, Buizza and Palmer 

(1998), Buizza et al. (1999), Hamill et al. (2000b), Palmer et al. (2000), Richardson (2000, 

2001ab), Wandishin et al. (2001), Ebert (2001), Mullen and Buizza (2001, 2002), Bright and 

Mullen (2002), Yang and Arritt (2002), Legg and Mylne (2004), Zhu et al. (2002), Toth et al. 

(2003), and Gallus and Segal (2004). Harvey et al. (1992) provide a thorough review of the 

concepts underlying the ROC. 

 The equitable threat score (ETS) provides one of many ways of summarizing the 

ability of a deterministic forecast to correctly forecast a dichotomous event.  The ETS 

will produce a score of 1.0 for a perfect forecast, and random forecasts should be 

assigned a value of 0.0.  The ETS is commonly used to evaluate the skill of forecasts, 

especially precipitation.  See, for example, Rogers et al. (1995, 1996), Hamill (1999), 

Bayler et al. (2000), Stensrud et al. (2000), Xu et al. (2001), Ebert (2001), Gallus and 

Segal (2001), Chien et al. (2002), and Accadia et al. (2003). 

 The method for computing these metrics is now discussed, starting with the 

probabilistic metrics.  The BSS and ROC will be generated from ensemble forecasts, 

though they can be generated from any probabilistic forecast.  

 Start by defining a dichotomous event of interest, such as occurrence/non-

occurrence of precipitation, or temperature above or below a threshold.  Let Xe(j,k) = 

[X1(j,k), … , Xn(j,k)] be an n-member ensemble forecast of the relevant scalar variable 

(again, precipitation or temperature) for the jth of m locations and the kth of r case days.  
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The ensemble at that day and location is first sorted from lowest to highest.  This sorted 

ensemble is then converted into an n-member binary forecast Ie(j,k) = [I1(j,k), … , In (j,k)] 

indicating whether the event was forecast (=1) or not forecast (=0) in each member.  The 

observed weather is also converted to binary, denoted by Io(j,k).  

 

a.  Brier skill scores 

 Assuming that each member forecast is equally likely, a forecast probability 

pf(j,k) is calculated from the dichotomized ensemble:  

 pf (j,k) = 
Ii ( j,k)i=1

n

!
n

  .      (1) 

The Brier score of the forecast BSf is calculated as 

 BSf =
k=1

r

! pf ( j,k) " Io( j,k)( )
2

j=1

m

!  .     (2) 

A Brier skill score (BSS) is calculated as  

 BSS = 1.0 – BSf / BSc  ,       (3) 

where BSc is the Brier score of the reference probability forecast, commonly the 

probability of event occurrence from climatology.    

 An ambiguity and potential source of false skill may be traced to the method for 

calculating BSc, if an appropriate long-term climatology is not available  One method 

would be to generate a sample climatological probability pc(j) of event occurrence unique 

to each location of the m locations in the domain,  

 pc ( j) =

Io
k=1

r

! j,k( )

r
,        (4) 

in which case BSc would be  
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 BSc = pc j( ) ! Io j,k( )( )
j=1

m

"
k=1

r

"
2

  .    (5) 

Another way would be to calculate a climatology pc averaged over all locations 

 pc =

Io j,k( )
j=1

m

!
k=1

r

!

r "m
 ,        (6) 

and let 

 BSc = pc ! Io j,k( )( )
j=1

m

"
k=1

r

"
2

 .      (7) 

Differences in the calculation from using (4) – (5) instead of (6) – (7) will be illustrated 

in sections 3 and 4. 

 

b. ROC diagrams 

 Calculation of the ROC starts with the population of 2x2 contingency tables, with 

separate contingency tables tallied for each sorted ensemble member and location.   The 

contingency table for the jth location and ith sorted ensemble member has four elements: 

Γi(j) = [ ai(j), bi(j), ci(j), di(j)], indicating the relative fraction of hits, misses, false alarms, 

and correct rejections (Table 4).  The contingency table is populated using data over all r 

case days, and then each is normalized so the sum of the elements is 1.0.   

 The hit rate (HR) for the ith sorted forecast and jth location is defined as  

 

 HRi j( ) =
ai j( )

ai j( ) + bi j( )
.       (8) 

 

Similarly, the false alarm rate is defined as 
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 FARi j( ) =
ci j( )

ci j( ) + di j( )
.       (9) 

 

The ROC for the jth of m locations is a plot of HRi (j) (ordinate) vs. FARi (j) (abscissa), i 

= 1, … , n. A ROC curve that lies along the diagonal HR=FAR line indicates no skill; a 

curve that sweeps out maximal area, as far toward the upper left corner as possible, 

indicates maximal skill.  The ROC is commonly summarized through the integrated area 

under the ROC curve, or AUC.  A perfect forecast has an AUC of 1.0, and climatology 

an AUC of 0.5.  

 It has often been judged to be more convenient to examine one rather than m 

different ROC curves.  Hence, a single ROC is commonly generated from contingency 

tables averaged over all locations, i.e., !
i
= ai ,bi ,ci ,d i( )where ai = a

i
(j)

j=1

m

! / m , and 

bi ,ci , and d i are similarly defined.  Then  

 

 HR
i
=

ai

ai + bi

         (10) 

and  

 FAR
i
=

ci

ci + di
        (11) 

c.  Equitable threat score 

 Assume now that we have a deterministic forecast rather than an ensemble.   With 

sufficient sample size, the ETS could be calculated for each j of the m locations using 
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Table 4 (but dropping the i subscript denoting the ensemble member number).  The 

equation for the ETS is 

 ETS( j) =
a( j) ! ar ( j)

a( j) + b( j) + c( j) ! ar ( j)
,      (12) 

where ar(j) is the expected fraction of correct forecasts for a random forecast 

 ar ( j) =
a( j) + c( j)( ) a( j) + b( j)( )

a( j) + b( j) + c( j) + d( j)
.      (13) 

 Commonly because of small sample size, the ETS is calculated using contingency 

tables summed over all the grid points.  Let a = a(j)
j=1

m

! / m , and define b,c , and 

d similarly.  Then an ETS that presumably represents the domain-averaged skill is 

calculated from  

 ETS =
a ! ar

a + b + c ! ar
,        (14) 

where 

 ar =
a + b( ) a + c( )
a + b + c + d

.        (15) 

 

3. An example of false skill: synthetic data at two independent locations 

 

 Suppose a hypothetical planet consists of one big ocean and two small, isolated 

islands, and suppose weather forecasting is utterly impossible on this planet; the best one 

can do is to forecast the climatological probability distribution appropriate to each island.  

To simulate this, assume that at island 1, the daily maximum temperature was randomly 
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sampled from its fixed climatological distribution ~ N(+α, 1), that is, the temperature was 

a draw from a normal distribution with a mean of α and a standard deviation of 1.0.  At 

island 2, the daily maximum temperature ~ N(-α, 1).  100-member ensembles of weather 

forecasts were generated by taking random draws from each island’s climatology.  

100,000 days of weather and ensemble forecasts were simulated, and we consider the 

event that the temperature was greater than 0.  On island 1, both verification and 

ensemble ~ N(+α, 1) and were drawn independently.  The same process was repeated for 

island 2, but verification and ensemble ~ N(-α, 1) .   

 Figure 1 synthesizes the forecasts scores’ overestimate as a function of α  when 

the Brier skill score is calculated by computing the climatology by eqs. 6-7, the ROC 

AUC is calculated using eqs. 10 – 11, and the ETS is calculated using eqs. 14 – 15.  As α 

is increased, the forecast skill is progressively overestimated, even though the ensemble 

is always randomly drawn from each island’s climatology.  

 What was the source of the overestimation of skill?  For each of these scores, the  

computation no longer implicitly assumed that the climatological distribution was ~ 

N(+α, 1)   or   ~ N(-α, 1).  Rather, it assumed that the climatological distribution was ~ 

0.5 • N(+α, 1) +0.5 • N(-α, 1), a bimodal distribution when α is large.  Meanwhile, the 

scores were computed consistent with the assumption that the forecast perfectly predicted 

which mode of the composite climatological distribution the verification lay in; when the 

forecasts were drawn from the positive mode N(+α, 1), the observed states were also 

drawn from the positive mode N(+α, 1),  and when the forecasts were drawn from N(-α, 

1),  the observed state were drawn from N(-α, 1) as well.  This illustrates that these 
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scores can report false skill in situations where the climatologies differ among the 

samples used to populate the contingency tables; they credit a forecast with having skill 

merely if the climatologies of the individual samples are different from the climatology 

of the combined samples.  

 

4. Climatological forecasts of 850 hPa temperature 

 

 We now demonstrate a simple example of false skill reported with real data.   

0000 UTC 850 hPa temperature analyses were extracted from the 2.5° NCEP-NCAR 

reanalysis (Kalnay et al. 1996) at a set of 26x12 grid points covering the conterminous 

United States (US).  Data was considered for the first ~ 2 months (60 days) of each year 

from 1979 to 2001, a mid-winter period when a grid point’s climatological temperature 

distribution should be relatively stable, i.e., random samples from January 1 and February 

28 (JF) can roughly be assumed to be sampled from the same underlying distribution. Let 

T denote the temperature at a grid point, and T ’ denote the temperature anomaly from the 

mean.  Two events were considered:  (1) T > 0C, and (2) T ’ > Q 2/3, where Q 2/3 was the 

upper tercile of the climatological distribution, i.e., the temperature threshold defining the 

boundary between the lower two-thirds of the distribution and the upper third. Q 2/3 was 

specified uniquely for each grid point.  

 First we describe the method for generating contingency tables for the event T > 

0C.  For each of the first 60 days of the year and for each of the 23 years (1380 samples), 

the following cross-validated process (Wilks 1995) was performed at each grid point:  (1) 

the analyzed temperature was extracted at that grid point, (2) the climatological 
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probability of the event was determined using the other 22 years of data, (3) a 50-member 

ensemble was randomly drawn from the other 22 years of JF temperature samples at that 

grid point,  (4) the ensemble was sorted, and (5) contingency tables were populated for 

that grid point.  After all grid points were processed in this manner, average contingency 

tables for all of the grid points were also generated.   To generate contingency tables for 

the ETS, the process was the same, but a single random sample from the 22 years of JF 

data was drawn rather than an ensemble. 

 When generating ROCs and ETSs for the event T ’ > Q 2/3, several additional 

steps were required.  After step (1) above, the climatological mean for each date and 

location was determined and subtracted from the temperature, creating a database of 

temperature anomalies.  The cross-validated climatological mean was estimated using a 

30-day window centered on each day, using the remaining 22 years.  Also, the terciles of 

the distribution were determined for each grid point. 

 

a.  T  > 0 C 

 The climatological probabilities for this event varied from 0.005 in the north to 

1.0 in the south.  The mean climatological probability was 0.59 with a standard deviation 

of 0.36. 

 When a location-dependent reference climatology was used (eqs. 4-5), the BSS 

was -0.03.  When the domain-averaged climatology was used (eqs. 6-7), the BSS 

reported a false skill of +0.52. 

 Figure 2a shows ROCs calculated from the individual grid point data; the ROC 

for every third grid point in the N-S and E-W directions are plotted.  The ROCs exhibit 
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sampling variability but lie close to the HR=FAR line.  However, the ROC based on a 

contingency table summed up over all the grid points (Fig. 2b) diagnosed a very large 

amount of skill. Again, these were artifacts of the widely differing climatologies for the 

grid points, as in section 3. 

 Table 5 reports the ETS for this event.  The ETS was calculated for each of the m 

locations using eq. 12 and then averaged.  For some of these locations, the denominator 

of eq. 12 was zero and the ETS was undefined, so the average ETS reported in Table 1 

was calculated excluding these locations, a tiny fraction of the number of grid points (see 

section 5 for an alternative method of calculation that does not exclude these locations).  

The ETS was also calculated using the summed contingency tables and eq. 14, excluding 

the same locations in calculating the table sums.  As Table 5 shows, the averaged ETS 

was approximately zero, but the ETS from the table sums was 0.345, reporting a false 

positive skill because samples with different climatologies were mixed together into the 

same contingency table. 

 

b. T’ > Q 2/3 

 By evaluating the probability of exceeding a quantile of the distribution, the 

climatological probabilities have been rendered uniform across all grid points; the 

climatology probability is of course 1/3 for this event. Consequently, the BSS was the 

same for both, -0.03 (it was less than zero because the 50-member random draw from 

climatology only approximates the long-term sample climatology).  With the ROC, 

whether we examined the average of scores at the grid points or computed the scores 
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from contingency table sums, we found no skill  (Fig. 3).  Similarly, the ETSs (Table 5) 

reported the same lack of skill regardless of the how the ETS was computed. 

 

5.  Equitable threat scores for numerical precipitation forecasts 

 

 One of the important goals of the U. S. National Weather Service is to improve 

forecasts of precipitation.  The ETS is one measure that is very commonly used to 

evaluate the skill of their deterministic forecasts.    The most common approach is to 

estimate the ETS for fixed precipitation thresholds from a contingency table populated 

over many days or months and over a wide geographic region such as the conterminous 

US.  We demonstrate here that the ETS calculated in this manner can drastically 

overestimate forecast skill. 

 To demonstrate this, a very large set of numerical forecasts was used, provided by 

the analog forecast technique discussed in Hamill et al. (2005).  The details of the 

forecast methodology can be found in this reference but are not particularly important 

here.  What is germane is that we produced a 25-year time series of gridded deterministic 

precipitation forecasts, all using the same model and forecast technique.  These forecasts 

have characteristics similar to those of current operational forecasts.  For this 

demonstration, we limit ourselves to considering the ETS of the mean of a 5-member 

ensemble of analog forecasts over the conterminous US for January and February from 

1979 to 2003.    Both the forecast and the verification data (from the North American 

Regional Reanalysis, Mesinger et al. 2005) are on a ~32 km grid.  We consider the 5 mm 

precipitation threshold here. 
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 Figure 4a illustrates the geographic dependence of the ETS on forecast location.  

This map is a very effective way of presenting information on the geographical 

dependence of threat score; skill was much larger in the southeast US and along the west 

coast than in the northern Great Plains.   Perhaps a user requires the information to be 

condensed to a single number to facilitate comparison between two different forecast 

models.  The ETS calculated from the contingency table sum using eq. 14 was 

approximately 0.41.  However, examining Fig. 4a, it was apparent that the large majority 

of grid points had ETS much below 0.41, suggesting again that ETS was overestimated. 

 Unfortunately, there were many points in Fig. 4a evaluated with a zero ETS, 

points at which no forecasts of greater than 5 mm were issued during the period.  This 

problem occurred for a much greater fraction of the grid points at higher precipitation 

thresholds (not shown).  Clearly, we would prefer each contingency table to be populated 

with enough samples that the statistics are relatively stable.  One possibility is to bin 

contingency tables together if they have similar climatologies.  Assume we will bin 

together all grid points with climatologies discretized to the nearest percent.  Define new 

contingency table elements 
  
a
i

c
, b

i

c
, c

i

c
, d

i

c
, i = 1,…,1 0 0 , where the c indicates a 

binning over climatologically similar forecasts.   Since the sample event probability for 

the jth grid point is defined by 
 
aj + bj , the elements can be defined according to  

 
 

ai
c

= aj
j=1

m

!
i "1

1 0 0
# aj + bj <

i

1 0 0

$

%
&&&

'

(
)))   .  (16) 

b
i

c
, c

i

c  and d
i

c are similarly defined. a
i

c
, b

i

c
, c

i

c
, d

i

c are then rescaled so their sum is again 

1.0.   Then the ETS can be defined for each bin in a manner similar to eqs. 12 – 13.  Let 

E T S
c
(i)denote the ETS for the ith climatological bin, and let f c (i)denote the fraction of 
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the grid points populating the ith bin.  Then an overall threat score can be calculated 

according to  

 
 
ET S

C

= f
c
i( )

i=1

1 0 0

! E T S
c
i( )      (17) 

Figure 5 shows the E T Sc (i) for each climatological bin, and the lower dashed line 

denotes ET S
C

while the upper dashed line denotes the ETS calculated from the 

contingency table sums according to eq. 14.  The solid line plots  f c (i) , normalized by 

the maximum frequency.  The overestimate of the ETS is now readily apparent; ET S
C

is 

much lower. 

 The ETS estimation technique in eqs. 16-17 has drawbacks.  Notably, the 

climatological event probability was defined by the sample event probability 
 
aj + bj , a 

reasonable assumption with over two decades of winter forecast data.  If the verification 

period is very short, then this sample probability may be a poor estimate of the long-term 

event probability; ideally a long, temporally and spatially dependent climatology should 

be used, if available.  Nonetheless, these details should not obscure the main point, the 

dramatic overestimation of threat score that is possible when contingency table values are 

summed across grid points with different climatologies. 

 

6.  Discussion 

 

 The preceding examples have demonstrated that the Brier skill score, relative 

operating characteristic, and the equitable threat score must be used with care when 

verifying weather forecasts.  Typically, the meteorological question being asked is 
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something akin to “what is the Brier skill score of my forecast averaged over Europe?”  

The naïve approach for calculating the Brier skill score may be to compute it under the 

assumption that the climatology is invariant across the verification region.  Similarly, 

when diagnosing the relative operating characteristic, or equitable threat score, a common 

step is to composite the forecast data into contingency tables that accumulate weather 

information across the domain.  The preceding analysis showed that these diagnostics 

may falsely report more skill than truly exists in situations where the climatology differs 

across the domain.  The more the climatology differs, the larger the falsely reported skill.  

By logical extension, false skill may also be reported if the verification samples span 

different seasons or even different times of the day with different climatologies but the 

data are still composited.  All of these are examples of what is known as “Simpson’s 

paradox” in statistics. 

 Ideally, verification is done with large samples of forecasts, and it is relatively 

simple to calculate an appropriate spatially and/or temporally varying climatology as a 

reference.  Of course, these ideal conditions are often not met; the climatological 

reference may be difficult to calculate, especially for intermittent, small-scale 

phenomena, and forecast sample size may be small.  Clearly, the skills of the statistical 

meteorologist will be put to the test.  The intent should at least be to design the 

verification method to minimize these problems, making at least relative inferences of 

skill (is model A more skillful than model B?) more trustworthy. 

 Below, we suggest some general guidelines that may be useful in adapting 

verification strategies to minimize this problem, as well as some considerations:   
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 • In order to avoid reporting false skill, perhaps the researcher can alter his 

or her verification methodology.  Alternative methodologies can be used that 

should not report false skill, such as:  (1) if appropriate, analyze events where the 

climatological probabilities are the same throughout the sample (e.g., Buizza et al. 

2003, Fig. 5, or Zhu et al. 2002).  Section 4 demonstrated that, for example, 

relative operating characteristics, Brier skill scores, and equitable threat scores of 

climatological forecasts of quantiles of the 850 hPa temperature distribution did 

not report false positive skill.  Regardless of whether the climatological means 

and variances are large or small, the fraction events classified as “yes” events are 

identical for different locations or times of the year (this methodology may less 

appropriate for variables like precipitation amount, since commonly we prefer to 

diagnose precipitation skill as a function of amount, and a chosen quantile could 

reflect very different amounts depending on the location).  (2) If sample sizes are 

large enough, perform the calculations separately each for sub-sample with a 

different climatology, as in section 5. The data can then be displayed with an 

informative plot indicating the geographic or temporal variability of the skill 

scores. If the data must be summarized in some manner and the small sample size 

affects the manner of summarization, perhaps scores can be composited among 

grid points with similar climatologies, as demonstrated in section 5. 

• The specific details regarding how the verification metrics are calculated 

should be fully described in journal articles and texts, since minor changes in the 

methodology can dramatically change the reported scores. 



 20 

 • Other scores such as the ranked probability skill score (Wilks 1995) can 

also falsely report positive skill, just as with the Brier skill score. Whatever the 

chosen verification metric, it is prudent to verify that climatological forecasts give 

the expected no-skill result before proceeding.  

 • Richardson (2001) demonstrated in a carefully controlled experiment 

that there was a theoretical equivalence between the Brier skill score and the 

integral of economic value assuming that users have a uniform distribution of 

cost-loss ratios between 0 and 1.  One of the underlying assumptions was an 

invariant climatology across all samples.  If this assumption is not met, then 

neither is this equivalence.  
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average over all grid points with nonsingular ETS, and the ETS from the sum of 
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Figure 4: (a): ETS for 1-2 day 5 mm precipitation forecasts as a function of location, 

using Jan-Feb 1979-2003 forecast and observational data. (b) Climatological probability 

of precipitation greater than 5 mm for Jan-Feb. 

 

Figure 5:  Equitable threat score (histogram) for the 5 mm threshold as a function of the 

climatological probability of event occurrence.  The frequency of the climatological event 

probability is plotted as the solid line, normalized to a maximum value of 1.0.  The 
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        University of Texahoma  

    Admit   Deny 
   ------------------------------------------------------ 
Female   | 120 (80%) | 30 (20%) | 
   |-------------------------- | -------------------------- 
Male   | 45 (90%) | 5 (10%) | 
   |-------------------------- | -------------------------- 
 
Table 1: Contingency table of numbers of students and admissions rates (in parentheses) 
into physical science programs at the University of Texahoma. 
  
 
 
        Texahoma State University  

    Admit   Deny 
   ------------------------------------------------------ 
Female   | 5 (10%) | 45 (90%) | 
   |-------------------------- | -------------------------- 
Male   | 50 (33%) | 100 (66%) | 
   |-------------------------- | -------------------------- 
 
Table 2:  As in Table 1, but for Texahoma State University. 
 
 
 
 
     Both Universities  

    Admit   Deny 
   ------------------------------------------------------ 
Female   | 125 (62.5%) | 75 (37.5%) | 
   |-------------------------- | -------------------------- 
Male   | 95 (47.5%) | 105 (52.5%) | 
   |-------------------------- | -------------------------- 
 
 
 
Table 3:  Contingency tables accumulated from both the University of Texahoma and 
Texahoma State University. 
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     Event forecast by ith member?  

     YES    NO 
   ------------------------------------------------------------------------ 
  YES |  ai (j)  |  bi (j)   | 
Event   |    Mitigated loss (C+Lu) | Loss (L = Lp + Lu) | 
Observed?  |---------------------------------- | ---------------------------------- | 
  NO |  ci (j)  |  di (j)  | 
   |        Cost (C)  |        No cost  |  
   ------------------------------------------------------------------------ 
 
 
Table 4:  Contingency table for the ith of the n sorted members at the jth location, 
indicating the relative fraction of hits [ai(j)], misses [bi(j)], false alarms [ci(j)], and correct 
rejections [di(j)].   The economic costs associated with each contingency are also shown 
and are discussed in the text. 

 
 
 
 
 
 

           Event  

            T > 0      T ’ > Q 2/3    
   ------------------------------------- 
ETS (average of     |       -0.001 |      -0.002 | 
grid points)  |  |  | 
   ------------------------------------- 
ETS (contingency |        0.345 |       -0.002      | 
table sum)  |  |  | 
   ------------------------------------- 
 
 
Table 5:  Equitable threat scores for the events T > 0 and T’ > Q 2/3, calculated as an 
average over all grid points with nonsingular ETS, and the ETS from the sum of 
contingency table elements at these grid points. 
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Figure 1: ROC AUC, BSS, and ETS as a function of the parameter α describing the 
difference in the means of the distributions between the two islands.  Skill scores are 
calculated assuming a composite climatology. 
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Figure 2: ROC for the event of 850 hPa temperature > 0 C using random draws from 
climatology using data from January-February 1979-2001. (a) ROC curves for selected 
individual locations around conterminous US, (b) ROC curve based on sum of 
contingency tables at individual grid points. 
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Figure 3: As in Fig. 2, but for the event of 850 hPa temperature anomaly is greater than 
the upper tercile of the climatological distribution.   
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Figure 4:  (a): ETS for 1-2 day 5 mm precipitation forecasts as a function of location, 
using Jan-Feb 1979-2003 forecast and observational data. (b) Climatological probability 
of precipitation greater than 5 mm for Jan-Feb. 
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Figure 5:  Equitable threat score (histogram) for the 5 mm threshold as a function of the 
climatological probability of event occurrence.  The frequency of the climatological event 
probability is plotted as the solid line, normalized to a maximum value of 1.0.  The 
dashed lines indicate the ETS calculated in two different ways. 


